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Peeking behind the scenes of a high 
performance data analysis library



Pandas - large, well-established project.



Overview

Intro

Data in Python Background

Indexing

Getting and Storing Data

Fast Grouping / Factorizing

Summary



Overview

Intro

Data in Python Background

Indexing

Getting and Storing Data

Fast Grouping / Factorizing

Summary



Pandas - huge code base

Open Hub - Py-Pandas

● 200K lines of code

● Depends on many other libraries

● Goal: orient towards key internal concepts

https://www.openhub.net/p/py-pandas
https://www.openhub.net/p/py-pandas


Pandas community rocks!

● Created by Wes McKinney, now maintained by Jeff 
Reback and many others

● Really open to small contributors

● Many friendly and supportive maintainers

● Go contribute!



Pandas provides a flexible API for data

● DataFrame - 2D container for 
labeled data

● Read data (read_csv, read_excel, 
read_hdf, read_sql, etc)

● Write data (df.to_csv(), df.
to_excel())

● Select, filter, transform data

● Big emphasis on labeled data

● Works really nicely with other 
python data analysis libraries
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Python flexibility can 
mean slowness



Take a simple-looking operation... 



Python’s dynamicity can be a problem

Have to lookup (i) and (log) 
repeatedly, 
even though they haven’t 
changed.

dis.dis(<code>)



Python C-API lets you avoid overhead.

● Choose when you want to bubble up to Python level

● Get compiler optimizations like other C programs

● Way more control over memory management.



Bookkeeping on Python objects.

● PyObject_HEAD:

○ Reference Count

○ Type

○ Value (or pointer to 
value)

Illustration: Jake VanderPlas: Why Python is Slow

https://jakevdp.github.io/blog/2014/05/09/why-python-is-slow/


Poor memory locality in Python containers.

How can we make this better?
Illustration: Jake VanderPlas: Why Python is Slow

https://jakevdp.github.io/blog/2014/05/09/why-python-is-slow/


Pack everything together in a “C”-level array

Illustration: Jake VanderPlas: Why Python is Slow

https://jakevdp.github.io/blog/2014/05/09/why-python-is-slow/


Numpy enables efficient, vectorized operations 
on (nd)arrays.

● ndarray is a pointer to memory in 
C or Fortran

● Based on really sturdy code mostly 
written in Fortran

● Can stay at C-level if you vectorize 
operations and use specialized 
functions (‘ufuncs’)

Illustration: Jake VanderPlas: Why Python is Slow

https://jakevdp.github.io/blog/2014/05/09/why-python-is-slow/


Cython lets you compile Python to C

● Compiles typed Python 
to C (preserving 
traceback!)

● Specialized for numpy

● Lots of goodies

○ Inline functions

○ Call c functions

○ Bubbles up to Python 
only when necessary



Example compiled Cython code



Numexpr - compiling Numpy bytecode for 
better performance.

● Compiles bytecode on numpy arrays 
to optimized ops

● Chunks numpy arrays and runs 
operations in cache-optimized groups

● Less overhead from temporary arrays



So...why pandas?



Pandas enables flexible, performant analysis.

● Heterogenous data types

● Easy, fast missing data handling

● Easier to write generic code

● Labeled data (numpy mostly assumes index == label)

● Relational data
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● Indexes

● Columns are “Series” (1 
dimensional NDFrame)

● Blocks of Data

Core pandas data structure is the DataFrame



Indexing Basics



Indexes are a big mapping
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● Essentially a big dict

● (set of) label(s) → integer 
locations

● read as “row C” maps to 
location 2

● “metadata” on 
DataFrame

● Any Series of Data can be 
converted to an Index

● Immutable!
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Index task 1: Lookups (map labels to locations)



Index task 2: Enable combining objects

● Translate between different indexes and columns

● Numpy ops don’t know about labels

● Make objects compatible for numpy ops



Example: Arithmetic

=+



Align the index of second DataFrame (get_indexer)
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df1 index df2 index

(lookup value of first index on 
other index)

Aligned



Scaling up...



Indexes have to do tons of lookups - needs to be fast!

● Answer: Klib!

● Super fast dict implementation specialized for each 
type (int, float, object, etc)

● Pull out an entire ndarray worth of values basically 
without bubbling up to Python level

● e.g., kh_get_int32, kh_get_int64, etc.
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Converting data



Getting in data: convert to Python, coerce types.

● CSV - C and Python engine

○ C engine: specialized reader that can read a 
subset of columns and handle comments / 
headers in low memory (fewer intermediate 
python objects)

○ iterate over possible dtypes and try converting to 
each one on all rows / subset of rows (dates, 
floats, integers, NA values, etc)

● Excel

○ use an external library, take advantage of hinting

○ uses TextParser Python internals



Storing Data - Blocks



Data is split into blocks under the hood

DataFrame



BlockManager handles translation between DataFrame 
and blocks

● BlockManager

○ Manages axes (indexes)

○ getting and changing data

○ DataFrame -> high level API

● Blocks

○ Specialized by type

○ Only cares about locations

○ Usually operating within 
types with NumPy

BlockManager
Axes

Blocks



Implications: within dtypes ops are fine

● Slicing within a dtype no copy

○ df.loc[:’2015-07-03’, [‘quantity’, 
‘points’]]

● cross-dtype slicing generally 
requires copy

● SettingWithCopy

○ not sure if you’re 
referencing same 
underlying info

BlockManager
Axes

Blocks



Implications: fixed size blocks make appends expensive

● Have to copy and resize all blocks 
on append*

● Various strategies to deal with 
this

○ zero out space to start

○ pull everything into Python 
first

○ concatenate multiple frames

BlockManager
Axes

Blocks

* This means multiple appends (concat & 
append are equivalent here). I.e., better to 
join two big DataFrames than append 
each row individually.
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Factorizing underlies key pandas ops 

● Mapping of repeated keys → 
integer

● More efficient for memory & 
algorithms

● Used in a bunch of places

○ GroupBy

○ Hierarchical Indexes

○ Categoricals

● Klib again for fast dicts and 
lookups



Motivation: Counting Sort (or “group sort”)

● Imagine you have 100k rows, but 
only 10k unique values

● Instead of comparisons (O(NlogN)), 
can scan through, grab unique 
values and the count of how many 
times each value occurs

● now you know bin size and bin order



Handling more complicated situations

● E.g., multiple columns

● Factorize each one independently

● Compute cross product (can be really big!)

● Factorize again to compute space



With factors, more things are easy

● Only compute factors once 
(expensive!)

● Quickly subset in O(N) scans

● Easier to write type-specialized 
aggregation functions in Cython
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Summary

● The key to doing many small operations in Python: 
don’t do them in Python!

● Indexing: set-like ops, build mapping behind the 
scenes, powers high level API

● Blocks: Subsetting/changing/getting data

○ underlying structure helps you think about when 
copies are going to happen

○ but copies happen a lot

● (Fast) factorization underlies many important 
operations



Thanks!
@jtratner on Twitter/Github
jeffrey.tratner@gmail.com


