Pandas Under The Hood

Peeking behind the scenes of a high performance data analysis library

July 25, 2015 | Jeff Tratner (@jtratner)

Pandas - large, well-established project.

ру	data / pandas			③ Unwatch ▼ 386	★ Unstar	4,685	% Fork 1,775
Flexible R data.	e and powerful data ana frame objects, statistica	<> Code					
	12,165 commits	₽ 7 branches	℅ 63 releases	د 406 contributor	6	() Issue	S 1,399
រោ DOC:	Aug 2, 2009 – Contributions to master, exe	Jul 23, 2015 cluding merge commits				Co	ntributions: Commits -
🕵 jre	100						
be	50	jtratne	er nmits / 22,682 ++ / 18,177		#9		
	0 2010		50				2015
F ak	wesm 2,979 commits / 389	,995 ++ / 2 7	2012	2014	8 -	-	#2
	2010	2012 2	014	2010	50	WING	2014

Intro

Data in Python Background Indexing **Getting and Storing Data** Fast Grouping / Factorizing Summary

Intro

Data in Python Background Indexing Getting and Storing Data Fast Grouping / Factorizing Summary

Pandas - huge code base

- 200K lines of code
- Depends on many other libraries
- Goal: orient towards key internal concepts

Open Hub - Py-Pandas

Pandas community rocks!

- Created by Wes McKinney, now maintained by Jeff Reback and many others
- Really open to small contributors
- Many friendly and supportive maintainers
- Go contribute!

Pandas provides a flexible API for data

	Quantity	Revenue	Points
Product			
Α	523	1103.25	5230
В	200	1525.10	860
С	148	3892.50	0
D	1610	5730.25	0
E	122	580.12	600
F	10	55342.00	100

- DataFrame 2D container for *labeled* data
- Read data (read_csv, read_excel, read_hdf, read_sql, etc)
- Write data (df.to_csv(), df. to_excel())
- Select, filter, transform data
- Big emphasis on labeled data
- Works really nicely with other python data analysis libraries

Intro

Data in Python Background Indexing Getting and Storing Data Fast Grouping / Factorizing Summary

Python flexibility can mean slowness

Take a simple-looking operation...

for i, x in enumerate(some_array): some_array[i] = log(x) * 5 + log(i)

Python's dynamicity can be a problem

Python C-API lets you avoid overhead.

- Choose when you want to bubble up to Python level
- Get compiler optimizations like other C programs
- Way more control over memory management.

Bookkeeping on Python objects.

Python Integer PyObject_HEAD digit 1

- PyObject_HEAD:
 - Reference Count \bigcirc
 - Type Ο
 - Value (or pointer to value)

Poor memory locality in Python containers.

How can we make this better?

Illustration: Jake VanderPlas: Why Python is Slow

Pack everything together in a "C"-level array

Illustration: Jake VanderPlas: Why Python is Slow

പ്ര

Numpy enables efficient, vectorized operations on (nd)arrays.

- ndarray is a pointer to memory in
 C or Fortran
- Based on really sturdy code mostly written in Fortran
- Can stay at C-level if you vectorize operations and use specialized functions ('ufuncs')

Cython lets you compile Python to C

```
def lookup(self, ndarray[int32_t] values):$
    cdef:$
        Py_ssize_t i, n = len(values)$
        int ret = 0$
        int32_t val$
        khiter_t k$
        ndarray[int32_t] locs = np.empty(n, dtype=np.int64)$
    for i in range(n):$
        val = values[i]$
        k = kh_get_int32(self.table, val)$
        if k != self.table.n_buckets:$
            locs[i] = self.table.vals[k]$
        else:$
            locs[i] = -1$
    return locs$
```

- Compiles typed Python to C (preserving traceback!)
- Specialized for numpy
- Lots of goodies
 - Inline functions
 - Call c functions
 - Bubbles up to Python only when necessary

Example compiled Cython code

\$

```
/* "pandas/hashtable.pyx":328$
 *-$
           for i in range(n):$
              val = values[i]
                                        # <<<<<S
              k = kh_get_int32(self.table, val)$
              if k != self.table.n_buckets:$
 */$
    _pyx_t_9 = _pyx_v_i;
    _pyx_t_10 = -1;
    if (__pyx_t_9 < 0) {$
      __pyx_t_9 += __pyx_pybuffernd_values.diminfo[0].shape;$
      if (unlikely(__pyx_t_9 < 0)) __pyx_t_10 = 0;$</pre>
    } else if (unlikely(__pyx_t_9 >= __pyx_pybuffernd_values.diminfo[0].shape)) __pyx_t_10 = 0;$
    if (unlikely(__pyx_t_10 != -1)) {$
      __Pyx_RaiseBufferIndexError(__pyx_t_10);$
      {__pyx_filename = __pyx_f[0]; __pyx_lineno = 328; __pyx_clineno = __LINE__; goto __pyx_L1_error;}$
    }$
    __pyx_v_val = (*__Pyx_BufPtrStrided1d(__pyx_t_5numpy_int32_t *, __pyx_pybuffernd_values.rcbuffer->pybuffer.buf, __pyx_t_9, __pyx_
$
    /* "pandas/hashtable.pyx":329$
              k = kh_get_int32(self.table, val)
                                                       $>>>>>>>>> #
 */$
    __pyx_v_k = kh_get_int32(__pyx_v_self->table, __pyx_v_val);$
$
    /* "pandas/hashtable.pyx":330$
              if k != self.table.n_buckets:
                                                       # <<<<<<$
                  locs[i] = self.table.vals[k]$
 */$
    __pyx_t_11 = ((__pyx_v_k != __pyx_v_self->table->n_buckets) != 0);$
    if (__pyx_t_11) {$
      /* "pandas/hashtable.pyx":331$
              if k != self.table.n_buckets:$
                  locs[i] = self.table.vals[k]
                                                     */$
      _pyx_t_12 = _pyx_v_i;
      _pyx_t_10 = -1;
      if ( nvx + 12 < 0) {$
```

Numexpr - compiling Numpy bytecode for better performance.

2*a + 3*	b
for i in xrange(0, r0 = a[i:i+128] r1 = b[i:i+128]	len(a), 256):
<pre>multiply(r0, 2, multiply(r1, 3, add(r2, r3, r2) c[i:i+128] = r2</pre>	r2) r3)

- Compiles bytecode on numpy arrays to optimized ops
- Chunks numpy arrays and runs operations in cache-optimized groups
- Less overhead from temporary arrays

So...why pandas?

Pandas enables flexible, performant analysis.

- Heterogenous data types
- Easy, fast missing data handling
- Easier to write generic code
- *Labeled* data (numpy mostly assumes index == label)
- Relational data

Intro Pandas

Data in Python Background

Indexing

Getting and Storing Data Fast Grouping / Factorizing

Summary

Core pandas data structure is the DataFrame

	Quantity	Revenue	Points
Product			
Α	523	1103.25	5230
В	200	1525.10	860
С	148	3892.50	0
D	1610	5730.25	0
E	122	580.12	600
F	10	55342.00	100

- Indexes
- Blocks of Data
- Columns are "Series" (1 dimensional NDFrame)

Indexing Basics

Indexes are a big mapping

- Essentially a big dict
- (set of) label(s) → integer
 locations
- read as "row C" maps to location 2
- "metadata" on DataFrame
- Any Series of Data can be converted to an Index
- Immutable!

Index task 1: Lookups (map labels to locations)

DF1

	Quantity	Revenue	Points
Product			
Α	523	1103.25	5230
В	200	1525.10	860
С	148	3892.50	0
D	1610	5730.25	0
E	122	580.12	600
F	10	55342.00	100

df1.loc['C']

Quantity	148.0			
Revenue	3892.5			
Points	0.0			
Name: C,	dtype: float64			

Index task 2: Enable combining objects

	Quantity	Revenue	Points
Product			
Α	523	1103.25	5230
В	200	1525.10	860
С	148	3892.50	0
D	1610	5730.25	0
E	122	580.12	600
F	10	55342.00	100

	Quantity	Revenue
Product		
D	0	0.00
Α	100	22.50
С	200	540.25
В	300	1534.00
E	400	2134.00

- Translate between different indexes and columns
- Numpy ops don't know about labels
- Make objects compatible for numpy ops

Example: Arithmetic

	Quantity	Revenue	Points
Product			
Α	523	1103.25	5230
В	200	1525.10	860
С	148	3892.50	0
D	1610	5730.25	0
E	122	580.12	600
F	10	55342.00	100

		Quantity	Revenue	
	Product			
	D	0	0.00	
+	Α	100	22.50	
	С	200	540.25	
	В	300	1534.00	
	E	400	2134.00	

	Quantity	Revenue	Points
Product			
Α	623	1125.75	NaN
В	500	3059.10	NaN
С	348	4432.75	NaN
D	1610	5730.25	NaN
E	522	2714.12	NaN
F	NaN	NaN	NaN

Align the index of second DataFrame (get_indexer)

(lookup value of first index on other index)

Scaling up...

Indexes have to do tons of lookups - needs to be fast!

- Answer: Klib!
- Super fast dict implementation specialized for each type (int, float, object, etc)
- Pull out an entire ndarray worth of values basically without bubbling up to Python level
- e.g., kh_get_int32, kh_get_int64, etc.

Intro Pandas

Data in Python Background

Indexing

Getting and Storing Data Fast Grouping / Factorizing Summary

Timestamp,UID,Product,Quantity,Member,Promo,Points,Paid 2015-07-01 02:50:00,xgy7b,A,3,True,SEA15,30,21.5 2015-07-01 03:30:00,sot5y,C,1,False,NA,10,15.0 2015-07-02 03:52:00,g8z81,B,2,False,NA,30,10.25 2015-07-03 04:01:00,lxzuo,A,2,False,SEA15,15,16.25 2015-07-03 05:30:00,3peyj,C,4,True,BOB10,10,28.5

Getting in data: convert to Python, coerce types.

- CSV C and Python engine
 - C engine: specialized reader that can read a subset of columns and handle comments / headers in low memory (fewer intermediate python objects)
 - iterate over possible dtypes and try converting to each one on all rows / subset of rows (dates, floats, integers, NA values, etc)
- Excel
 - use an external library, take advantage of hinting
 - uses TextParser Python internals

Storing Data - Blocks

Data is split into blocks under the hood

DataFrame

	UID	Product	Quantity	Member	Promo	Points	Paid
Timestamp							
2015-07-01 02:50:00	xgy7b	А	3	True	SEA15	30	21.50
2015-07-01 03:30:00	sot5y	С	1	False	NaN	10	15.00
2015-07-02 03:52:00	g8z8l	В	2	False	NaN	30	10.25
2015-07-03 04:01:00	lxzuo	А	2	False	SEA15	15	16.25
2015-07-03 05:30:00	Зреуј	С	4	True	BOB10	10	28.50

	0	1	2
0	xgy7b	А	SEA15
1	sot5y	С	NaN
2	g8z8l	В	NaN
3	lxzuo	А	SEA15
4	3peyj	С	BOB10

	0	1
0	3	30
1	1	10
2	2	30
3	2	15
4	4	10

	0
0	True
1	False
2	False
3	False
4	True

	0
0	21.50
1	15.00
2	10.25
3	16.25
4	28.50

BlockManager handles translation between DataFrame and blocks

	0	1	2	
0	xgy7b	A	SEA15	(
1	sot5y	С	NaN	
2	g8z8l	В	NaN	
3	lxzuo	А	SEA15	~~
4	Зреуј	С	BOB10	4

		_			
0	1			0	
3	30		0	True	
1	10		1	False	
2	30		2	False	
2	15		3	False	
4	10		4	True	

	0	
0	21.50	
1	15.00	
2	10.25	
3	16.25	
4	28.50	

- BlockManager
 - Manages axes (indexes)
 - getting and changing data
 - DataFrame -> high level API
- Blocks
 - Specialized by type
 - Only cares about *locations*
 - Usually operating within types with NumPy

Implications: within dtypes ops are fine

- Slicing within a dtype no copy
 - o df.loc[:'2015-07-03', ['quantity', 'points']]
- cross-dtype slicing generally requires copy
 - SettingWithCopy
 - not sure if you're referencing same underlying info

Implications: fixed size blocks make appends expensive

BlockManager

	0	1	2		0	
0	xgy7b	А	SEA15	0	3	
1	sot5y	С	NaN	1	1	
2	g8z8l	в	NaN	2	2	
3	lxzuo	А	SEA15	3	2	
4	Зреуј	С	BOB10	4	4	

1			0	
30		0	True	0
10		1	False	1
30		2	False	2
15		3	False	3
10		4	True	4
	-			_

21.50

15.00

10.25

16.25

28.50

Have to copy and resize all blocks
on append*

- Various strategies to deal with this
 - zero out space to start
 - pull everything into Python first
 - concatenate multiple frames
 - * This means *multiple* appends (concat & append are equivalent here). I.e., better to join two big DataFrames than append each row individually.

Intro Pandas

Data in Python Background

Indexing

Getting and Storing Data

Fast Factorizing / Grouping

Summary

Factorizing underlies key pandas ops

- indexes = []
 factors = {}
 max_factor = 0
 for elem in array:
 if elem not in factors:
 factors[elem] = max_factor
 max_factor += 1
 indexes.append(factors[elem])
- Mapping of repeated keys → integer
- More efficient for memory & algorithms
- Used in a bunch of places
 - GroupBy
 - Hierarchical Indexes
 - Categoricals
- Klib again for fast dicts and lookups

Motivation: Counting Sort (or "group sort")

- Imagine you have 100k rows, but only 10k unique values
- Instead of comparisons (O(NlogN)), can scan through, grab unique values and the *count* of how many times each value occurs
- now you know bin size and bin order

Handling more complicated situations

- E.g., multiple columns
- Factorize each one independently
- Compute cross product (can be really big!)
- Factorize again to compute space

With factors, more things are easy

- Only compute factors once (expensive!)
- Quickly subset in O(N) scans
- Easier to write type-specialized aggregation functions in Cython

Intro Pandas

Data in Python Background

Indexing

Getting and Storing Data

Fast Grouping / Factorizing

Summary

Summary

- The key to doing many small operations in Python: don't do them in Python!
- Indexing: set-like ops, build mapping behind the scenes, powers high level API
- Blocks: Subsetting/changing/getting data
 - underlying structure helps you think about when copies are going to happen
 - but copies happen a lot
- (Fast) factorization underlies many important operations

Thanks!

@jtratner on Twitter/Github jeffrey.tratner@gmail.com

